Реклама:

Вещественные числа (конечные и бесконечные десятичные дроби) обрабатываются и хранятся в компьютере в формате с плавающей запятой. При таком формате представления числа положение запятой в записи может изменяться. Любое вещественное число К в формате с плавающей запятой может быть представлено в виде:

К = ±А • к±р, (2.7)

где А — мантисса числа; к — основание системы счисления; р — порядок числа.

Выражение (2.7) для десятичной системы счисления примет вид: К10 = ±А • 10 ±р, для двоичной — К2 = ±А • 2 ±р, для восьмеричной — К8 = ±А • 8±р, для шестнадцатеричной — К16 = ±А • 16±р и т.д.

Такая форма представления числа также называется нормальной. С изменением порядка запятая в числе смещается, т.е. как бы плавает влево или вправо. Поэтому нормальную форму представления чисел называют формой с плавающей запятой. Десятичное число 15,5, например, в формате с плавающей запятой может быть представлено в виде: 0,155 • 102; 1,55 • 101; 15,5 • 100; 155,0 • 10-1; 1550,0 • 10 -2 и т.д. Эта форма записи десятичного числа 15,5 с плавающей запятой не используется при написании компьютерных программ и вводе их в компьютер (устройства ввода компьютеров воспринимают только линейную запись данных). Исходя из этого выражение (2.7) для представления десятичных чисел и ввода их в компьютер преобразовывают к виду

К = ± АЕ ± Р, (2.8)

где Р — порядок числа, т.е. вместо основания системы счисления 10 пишут букву Е, вместо запятой — точку, и знак умножения не ставится. Таким образом, число 15,5 в формате с плавающей запятой и линейной записи (компьютерное представление) будет записано в виде: 0.155Е2; 1.55Е1; 15.5Е0; 155.0Е-1; 1550.0Е-2 и т.д.

Независимо от системы счисления любое число в форме с плавающей запятой может быть представлено бесконечным множеством чисел. Такая форма записи называется ненормализованной. Для однозначного представления чисел с плавающей запятой используют нормализованную форму записи числа, при которой мантисса числа должна отвечать условию

1/А <= \А\ < 1, (2.9)

где \А\ — абсолютное значение мантиссы числа.

Условие (2.9) означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля, или, другими словами, если после запятой в мантиссе стоит не нуль, то число называется нормализованным. Так, число 15,5 в нормализованном виде (нормализованная мантисса) в форме с плавающей запятой будет выглядеть следующим образом: 0,155 ■ 102, т.е. нормализованная мантисса будет А = 0,155 и порядок Р = 2, или в компьютерном представлении числа 0.155Е2.

Числа в форме с плавающей запятой имеют фиксированный формат и занимают в памяти компьютера четыре (32 бит) или восемь байт (64 бит). Если число занимает в памяти компьютера 32 разряда, то это число обычной точности, если 64 разряда, то это число двойной точности. При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, мантиссы и порядка. Количество разрядов, которое отводится под порядок числа, определяет диапазон изменения чисел, а количество разрядов, отведенных для хранения мантиссы, — точность, с которой задается число.


⇐ Предыдущая страница| |Следующая страница ⇒