Реклама:

Все виды памяти, которые мы рассматривали до сих пор, имеют одно общее свойство: они позволяют и записывать, и считывать информацию. Такая память называется ОЗУ (оперативное запоминающее устройство), или RAM (Random Access Memory - оперативная память). Существует два типа ОЗУ: статическое и динамическое. Статическое ОЗУ (Static RAM, SRAM) конструируется с использованием D-триггеров. Информация в ОЗУ сохраняется на протяжении всего времени, пока к нему подается питание: секунды, минуты, часы и даже дни. Статическое ОЗУ работает очень быстро. Обычно время доступа составляет несколько наносекунд. По этой причине статическое ОЗУ часто используется в качестве кэш-памяти второго уровня.

В динамическом ОЗУ (Dynamic RAM, DRAM), напротив, триггеры не используются. Динамическое ОЗУ представляет собой массив ячеек, каждая из которых содержит транзистор и крошечный конденсатор. Конденсаторы могут быть заряженными и разряженными, что позволяет хранить нули и единицы. Поскольку электрический заряд имеет тенденцию исчезать, каждый бит в динамическом ОЗУ должен обновляться (перезаряжаться) каждые несколько миллисекунд, чтобы предотвратить утечку данных. Поскольку об обновлении должна заботиться внешняя логика, динамическое ОЗУ требует более сложного сопряжения, чем статическое, хотя этот недостаток компенсируется большим объемом.

Поскольку динамическому ОЗУ нужен только 1 транзистор и 1 конденсатор на бит (статическому ОЗУ требуется в лучшем случае 6 транзисторов на бит), динамическое ОЗУ имеет очень высокую плотность записи (много битов на одну микросхему). По этой причине основная память почти всегда строится на основе динамических ОЗУ. Однако динамические ОЗУ работают очень медленно (время доступа занимает десятки наносекунд). Таким образом, сочетание кэш-памяти на основе статического ОЗУ и основной памяти на основе динамического ОЗУ соединяет в себе преимущества обоих устройств.

Существует несколько типов динамических ОЗУ. Самый древний тип, который все еще используется, - FPM (Fast Page Mode - быстрый постраничный режим). Это ОЗУ представляет собой матрицу битов. Аппаратное обеспечение представляет адрес строки, а затем - адреса столбцов (мы описывали этот процесс, когда говорили об устройстве памяти, показанном на рис. 3.31, б). Явные сигналы обеспечивают асинхронную работу памяти и главного тактового генератора системы.

FPM постепенно замещается памятью EDO (Extended Data Output - память с расширенными возможностями вывода)1, которая позволяет обращаться к памяти еще до того, как закончилось предыдущее обращение. Такой конвейерный режим, хотя и не ускоряет доступ к памяти, повышает пропускную способность, позволяя получить больше слов в секунду.

Память типа FPM и EDO сохраняла актуальность в те времена, когда продолжительность цикла работы микросхем памяти не превышала 12 не. Впоследствии, с увеличением быстродействия процессоров, сформировалась потребность в более быстрых микросхемах памяти, и тогда на смену асинхронным режимам FPM и EDO пришли синхронные динамические ОЗУ (Synchronous DRAM, SDRAM). Синхронное динамическое ОЗУ управляется одним синхронизирующим сигналом. Данное устройство представляет собой гибрид статического и динамического ОЗУ. Основное преимущество синхронного динамического ОЗУ состоит в том, что оно исключает зависимость микросхемы памяти от управляющих сигналов. ЦП сообщает памяти, сколько циклов следует выполнить, а затем запускает эти циклы. Каждый цикл на выходе дает 4, 8 или 16 бит в зависимости от количества выходных строк. Устранение зависимости от управляющих сигналов приводит к увеличению скорости передачи данных между ЦП и памятью.

Следующим этапом в развитии памяти SDRAM стала память DDR (Double Data Rate - передача данных с двойной скоростью). Эта технология предусматривает вывод данных как на фронте, так и на спаде импульса, вследствие чего скорость передачи увеличивается вдвое. Например, 8-разрядная микросхема такого типа, работающая с частотой 200 МГц, дает на выходе два 8-разрядных значения 200 млн раз в секунду (разумеется, такая скорость удерживается в течение небольшого периода времени); таким образом, теоретически кратковременная скорость может достигать 3,2 Гбайт/с.

Энергонезависимая память

ОЗУ - не единственный тип микросхем памяти. Во многих случаях данные должны сохраняться, даже если питание отключено (например, если речь идет об игрушках, различных приборах и машинах). Более того, после установки ни

1 Динамическая память типа EDO практически вытеснила обычную динамическую память, работающую в режиме FPM, в середине 90-х годов. - Примеч. научи, ред.

программы, ни данные не должны изменяться. Эти требования привели к появлению ПЗУ (постоянных запоминающих устройств), или ROM (Read-Only Memory - постоянная память). ПЗУ не позволяют изменять и стирать хранящуюся в них информацию (ни умышленно, ни случайно). Данные записываются в ПЗУ в процессе производства. Для этого изготавливается трафарет с определенным набором битов, который накладывается на фоточувствительный материал, а затем открытые (или закрытые) части поверхности вытравливаются. Единственный способ изменить программу в ПЗУ - поменять всю микросхему.

ПЗУ стоят гораздо дешевле ОЗУ, если заказывать их большими партиями, чтобы оплатить расходы на изготовление трафарета. Однако они не допускают изменений после выпуска с производства, а между подачей заказа на ПЗУ и его выполнением может пройти несколько недель. Чтобы компаниям было проще разрабатывать новые устройства, основанные на ПЗУ, были выпущены программируемые ПЗУ (Programmable ROM, PROM). В отличие от обычных ПЗУ, их можно программировать в условиях эксплуатации, что позволяет сократить время выполнения заказа. Многие программируемые ПЗУ содержат массив крошечных плавких перемычек. Чтобы пережечь определенную перемычку, нужно выбрать требуемые строку и столбец, а затем приложить высокое напряжение к определенному выводу микросхемы.

Следующая разработка этой линии - стираемое программируемое ПЗУ (Erasable PROM, EPROM), которое можно программировать в условиях эксплуатации, а также стирать с него информацию. Если кварцевое окно в данном ПЗУ подвергать воздействию сильного ультрафиолетового света в течение 15 минут, все биты установятся в 1. Если нужно сделать много изменений во время одного этапа проектирования, стираемые ПЗУ гораздо экономичнее, чем обычные программируемые ПЗУ, поскольку их можно использовать многократно. Стираемые программируемые ПЗУ обычно устроены так же, как статические ОЗУ. Например, микросхема 27С040 имеет структуру, которая показана на рис. 3.31, я, а такая структура типична для статического ОЗУ.

Следующий этап - электронно-перепрограммируемое ПЗУ (Electronically EPROM, EEPROM), с которого можно стирать информацию, прилагая к нему импульсы, и которое не нужно для этого помещать в специальную камеру, чтобы подвергнуть воздействию ультрафиолетовых лучей. Кроме того, чтобы перепрограммировать данное устройство, его не нужно вставлять в специальный аппарат для программирования, в отличие от стираемого программируемого ПЗУ. В то же время самые большие электронно-перепрограммируемые ПЗУ в 64 раза меньше обычных стираемых ПЗУ, и работают они в два раза медленнее. Электронно-перепрограммируемые ПЗУ не могут конкурировать с динамическими и статическими ОЗУ, поскольку работают в 10 раз медленнее, их емкость в 100 раз меньше, и они стоят гораздо дороже. Они используются только в тех ситуациях, когда необходимо сохранять информацию при выключении питания.

Более современный тип электронно-перепрограммируемого ПЗУ - флэш-память. В отличие от стираемого ПЗУ, которое стирается под воздействием ультрафиолетовых лучей, и от электронно-перепрограммируемого ПЗУ, которое стирается по байтам, флэш-память стирается и записывается блоками. Многие изготовители производят небольшие печатные платы, содержащие сотни мегабайтов флэш-памяти. Они используются для хранения изображений в цифровых камерах и для других целей. Возможно, когда-нибудь флэш-память вытеснит диски, что будет грандиозным шагом вперед, учитывая время доступа в 50 не. Основной технической проблемой в данный момент является то, что флэш-память изнашивается после 100 000 операций стирания, а диски могут служить годами независимо от того, сколько раз они перезаписывались. Краткое описание различных типов памяти дано в табл. 3.2.

Таблица 3.2. Характеристики различных типов памяти

ОЗУ и ПЗУ

Микросхемы памяти || Оглавление || Микросхемы процессоров и шины